CUDA w nauce od NVIDIA

Technologia NVIDIA CUDA jest wykorzystywana przez niektórych naukowców w pracach mogących zrewolucjonizować współczesne badania.

Pulsar Vela - w badaniach którego pomaga NVIDIA
Pulsar Vela - w badaniach którego pomaga NVIDIAmateriały prasowe

- Technologia NVIDIA CUDA dała badaniom naukowym moc obliczeniową, która wcześniej nie była dostępna dla naukowców - fizycznie i finansowo," powiedział Dr. Davis Anderson, założyciel BOINC i naukowiec U.C Berkley Space Science Laboratory. "Technologia CUDA sprawia, że naukowcom jest łatwo zoptymalizować projekty BOINC pod GPU NVIDIA i tworzyć aplikacje stosowane do dynamiki molekularnej, przewidywania struktur proteinowych, modelowania klimatu i pogody, wizualizacji medycznych oraz wielu innych zadań."

BOINC stanowi unikalne podejście do super computingu, w którym wiele komputerów łączonych jest poprzez internet, a ich łączna moc obliczeniowa jest używana do rozwiązywania obszernych zadań obliczeniowych. BOINC dostarcza platformę obliczeń rozproszonych dla szerokiego wachlarza projektów naukowych obejmujących pomoc w leczeniu poważnych chorób, problem globalnego ocieplenia, odkrywania pulsary i wykonują wiele innych odkryć naukowych na domowych komputerach.

SETI@Home

Naukowcy zajmujący się projektem SETI otrzymali wielki przyrost mocy obliczeniowej, kiedy NVIDIA i BOINC wypuściły zoptymalizowaną aplikację kliencką, która pozwala SETI@home korzystać z GPU GeForce. SETI@home, największy projekt BOINC obejmujący ponad 200000 aktywnych użytkowników, polega na wyszukiwaniu śladów pozaziemskiej inteligencji przy pomocy radioteleskopów wykrywających sygnały radiowe docierające do nas z kosmosu. Wydajność GPU GeForce GTX 280 w SETI@home jest ponad 2 razy większa niż w przypadku najszybszego, wielordzeniowego procesora konsumenckiego (Intel Core i7 965 3.2Ghz) oraz prawie 8 razy większa niż w przypadku przeciętnego, dwurdzeniowego procesora (Intel Core2 Duo E8200 2.66Ghz) .

GPUGRID

GPUGRID to pierwszy z projektów BOINC, wykorzystujących moc technologii obliczeniowej CUDA wraz z GPU NVIDIA GeForce. Używa on kart graficznych NVIDIA zaangażowanych w projekcie komputerów do obliczeń wysoce skomplikowanych symulacji struktur bio-molekularnych. Umożliwienie aplikacji korzystania z mocy GPU NVIDIA spowodowało, iż 1000 kart graficznych zapewnia ten sam poziom mocy obliczeniowej co 20000 CPU w tych samych projektach. Jest to aż 20-krotne przyspieszenie.

Einstein@Home

Technologia NVIDIA CUDA już wkrótce wesprze również trzeci co do wielkości projekt BOINC, Einstein@home, który wykorzystuje moc współdzielonych sieci obliczeniowych do poszukiwania wirujących gwiazd neutronowych (zwanych również pulsarami) poprzez wykorzystanie danych z wykrywaczy fal grawitacyjnych.

INTERIA.PL/informacje prasowe
Masz sugestie, uwagi albo widzisz błąd?
Dołącz do nas